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Bad News by Hirriart-U. & Lemarechal

Steepest descent with exact line search may get stuck on convex
piecewise linear (PL) f , due to Zenon effect = Zigzagging
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PL test function by H. U. & L.
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Good News by H.U. & L. and Griewank et al:
True steepest descent trajectory x(t) defined by:

−d x(t)
d t+

= −d(x) ≡ short(∂f (x)) ≡ argmin{‖g‖ : g ∈ ∂f (x)}

is in convex case unique solution of differential inclusion ẋ ∈ −∂f (x),
which has stationary cluster points or limit x∗ in minimal level set.
Can be realized for PL f using abs-normal form and Zenon effect excluded.
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Results by Bundle Method (Karmitsa)
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Imperative program model

Levels of Nonsmoothness

0 Straightline code with analytic elementals

1 Add abs,min and max to Level 0
2 Add Euclidean norm to Level 1
3 Allow for sign and program branches

Assumed bounds on bounded domains

Intermediate values and derivatives.
Loop length and recursion depth.

LiPsMinLiPsMin
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Nesterov’s test functions

Nesterov suggested ϕν : Rn → R given by

ϕ0(x) = 1
4(x1 − 1)2 +

n−1∑
i=1

(xi+1 − 2x2
i + 1)2 Level 0

⇒ smooth and unimodal

ϕ1(x) = 1
4(x1 − 1)2 +

n−1∑
i=1

∣∣∣xi+1 − 2x2
i + 1

∣∣∣ Level 1

⇒ nonsmooth, simply switched and unimodal

ϕ2(x) = 1
4 |x1 − 1|+

n−1∑
i=1
|xi+1 − 2|xi |+ 1| Level 1

⇒ nonsmooth, multiply switched and multimodal
all have unique global minimizer x∗ = (1, 1, · · · , 1)
and bad start (−1, 1, . . . , (−1)n).
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BFGS on Second Nesterov Example

Nesterov−Chebyshev−Rosenbrock, second variant
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Nonsmooth minimality conditions

Popular standard: Clark stationarity

0 ∈ ∂Cϕ(x) ≡ conv{lim gk : gk = ∇ϕ(xk) and xk → x}

A little stronger: Mordukhovich stationarity

0 ∈ ∂Mϕ(x) ⊂ ∂Cϕ(x)

Glaring Example of Insufficiency

ϕ(x) = min(x , 0) = 1
2(x−|x |) : R→ R

⇒

0 ∈ ∂Mϕ(0) = {−1, 0} ⊂ ∂Cϕ(0) = [−1, 0]

but ϕ is concave and unbounded below.

f(x)

x
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Has this function a minimum?

Gradient cube example with maximal switching depth

f (x) = |zn|+ ε
n−1∑
i=1
|zi |, z1 = x1, and zi = xi − |zi−1|, i = 2, . . . , n .
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Note, no convexity whatsoever !
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Absnormal Representation

Level 1 Assumption:
Nonsmoothness cast in terms of abs() only!

Consequence
ϕ can be written in abs-normal form using switching variables

zi , i = 1, . . . , s

as arguments of abs (.), i.e. ϕ(x) = f (x , |z(x)|) where

z = F (x , |z |) with F ∈ C2 (Rn+s ,Rs)
y = f (x , |z |) with f ∈ C2 (Rn+s ,R

)
F and f or rather its relevant derivatives are obtainable by

Algorithmic Piecewise Differentiation APD
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Local Piecewise Linearization

∆y ≡ ϕ(x + ∆x)− ϕ(x)
≈ a>∆x + b>(|z + ∆z | − |z |) + 1

2∆x>H∆x + O(‖∆x‖2)
∆z = Z∆x + L(|z + ∆z | − |z |)

with

L = ∂F (x , |z |)
∂|z | ∈ Rs×s strictly lower triangular of nilpotency ν ≤ s.

Z = ∂

∂x F (x , |z |) ∈ Rs×n

a = ∂

∂x f (x , |z |) ∈ Rn, b = ∂

∂|z | f (x , |z |) ∈ Rs

H = H(x , λ) ∈ Rn×n ≡ Hessian of suitable Lagrangian
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On first Nesterov Example

ϕ1(x)− 1
4(x1 − 1)2 =

n−1∑
i=1

∣∣∣xi+1 − 2x2
i + 1

∣∣∣ =
n−1∑
i=1
|zi |

with
zi = Fi (x , |z |) = xi+1 − 2x2

i + 1 for i = 1, . . . , n − 1

so that L = 0 ∈ R(n−1)×(n−1)

Z (x) =


−4 x1 1 0 · · · · · · · · · · · · 0 0
0 −4 x2 1 · · · · · · · · · · · · 0 0
0 0 −4 x3 · · · · · · · · · · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · · · · · · · 1 0
0 0 0 · · · · · · · · · · · · −4 xs 1

 ∈ R
(n−1)×n

a =
(

1
2(x1 − 1), 0, . . . , 0

)
∈ Rn, and b = (1, . . . , 1) ∈ Rn−1
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Signature Vector and Domains

The signature vector

σ(x) = sgn(z(x)) ∈ {−1, 0, 1}s

and the corresponding diagonal matrix

Σ = diag(σ) ∈ {−1, 0, 1}s×s

define active switch set

α = α(x) ≡ {1 ≤ i ≤ s |σi (x) = 0} |α(x)| = s − |σ(x)|.

Furthermore, for fixed σ(Σ)

z = F (x ,Σz)

has unique solution zσ with ∇zσ = ∂
∂x z

σ = (I − LΣ)−1Z .
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Signatures on second Nesterov

σ = (−1,−1,−1)

(−1,−1, 1)
σ =

(1,−1, 1)
σ = σ =

(1, 1, 1)

σ =
(1, 1,−1)

σ =
(1,−1,−1)

x1
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−1

0

1

x2
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Linear Independence Kink Qualification

Definition
We say that the linear independence kink qualification is satisfied at a
point x ∈ Rn if for σ = σ(x) the active Jacobian

J(x) ≡ ∇zσα(x) ≡
(
e>i ∇zσ(x)

)
i∈α
∈ R|α|×n

has full row rank |α|, which requires in particular that |σ| ≥ s − n.

Lemma (Transversality of kink surfaces)
LIKQ implies that the sets {zi (x) = 0} form locally piecewise smooth
hypersurfaces that are transversal whereever they intersect.

Lemma (LIKQ for Nesterov)
The functions ϕ1 and ϕ2 with their natural abs-normal forms satisfy LIKQ
globally, i.e., throughout Rn.
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Trunk and branches for n = 3, s = 2

trunk σ = (0, 0)

σ = (1, 0)

σ = (−1, 0)

σ = (0, 1)

σ = (0,−1)
branch
problem
σ = (1,−1)

branch
problem
σ = (1, 1)

branch
problem
σ = (−1, 1)

branch
problem

σ = (−1,−1)
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Necessary: Trunk optimality

Assumptions
Full activity, i.e., s = |α| ≤ n and
LIKQ, i.e. J(x) = Z has full rank with Z>V = 0 for V ∈ Rn×(n−s)

Consequence 1

minϕ(x) ≡ f (x , 0) s.t. z = F (x , 0) = 0

satisfies LICQ and minimality requires
Tangential Stationarity

aT + λTZ = 0 ∈ Rn with λ ∈ Rs

Positive Curvature

V>HV � 0 with H(x , λ) ≡ f (x , 0)xx +
(
λ>F (x , 0)

)
xx
∈ Rn×n
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Sufficient: Branch optimality

x local minimizer of ϕ(x)

⇐⇒

x local minimizer of the smooth problems

f (x ,Σz) s.t. z = F (x ,Σz), Σz ≥ 0

for any Σ = diag(σ) with σ ∈ {−1, 1}s

Normal Growth

bT + λT (L− Σ) ≡ µ ≥ 0 ⇐⇒ bT ≥ |λ>| − λTL ⇐⇒

bT ≥ λ>Σ− λTL and bT ≥ λ>(−Σ)− λTL for some Σ
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Lemma (Sufficient conditions in linear case)
If F and f are linear then a point x where LIKQ holds is a local minimizer
⇐⇒

a> + λ>Z = 0 and b> ≥ |λ|> − λ>L .

i.e. the tangential stationarity and normal growth conditions are satisfied.

Corollary (Second order Sufficiency)
For general F , f the point x must be strict local minimizer if the normal
growth condition holds strictly, i.e. b > |λ| − L>λ and V THV � 0.

Lemma (Relation to stationarity concepts)
Tangential Stationarity and Normal Growth =⇒
Mordukhovich =⇒ Clarke =⇒ Tangential Stationarity.
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Localization at given point x

Elimination of inactive kinks
Inactive switching variables ẑ ≡ (σizi )i 6∈α keep their sign in neighborhood
and can be expressed as functions of x and critical switches ž = (zi )i∈α i.e.

ẑ = ẑ(x , |ž |) ∈ R|σ|

⇐⇒

ẑ = F̂ (x , |ž |, ẑ) ≡ (σiFi (x , |ž |, ẑ))i 6∈α ∈ R|σ|

Resulting reduced problem

ž = F̌ (x , |ž |, ẑ(x , |ž |)) ∈ R|α|

y = f (x , |ž |, ẑ(x , |ž |)) ∈ Ri

is fully active at reference point and LIKQ is maintained.
A. Griewank Nonsmooth Optimality Warsaw 23 / 43



Optimality conditions in general case

Tangential stationarity:

[fx , fẑ ] = −[ λ̌> λ̂>]
[

F̌x F̌ẑ
F̂x F̂ẑ − I

]
∈ Rn+|σ|

Normal growth:

fz̄ ≥ | λ̌>| − [ λ̌> λ̂>]
[
F̌z̄
F̂z̄

]
∈ R|α|

Positive Curvature:
0 � V̌>ȞV̌ ∈ R(n−|α|)×(n−|α|)

Becomes sufficient if normal growth strict and V̌>ȞV̌ is nonsingular.

Violation of any necessary condition yields parabolas of descent.
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0 � V̌>ȞV̌ ∈ R(n−|α|)×(n−|α|)

Becomes sufficient if normal growth strict and V̌>ȞV̌ is nonsingular.
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F̂x F̂ẑ − I
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Verification on Nesterov examples

ϕ0 : Conditions reduce to ∇ϕ0 = 0 and H = ∇2ϕ0 � 0 which
hold only at x∗ with det(H) > 0.

ϕ1 : Tangential stationarity is only satisfied at x∗, which also
exhibits strict normal growth and SSC.

ϕ2 : All 2n−1 Clarke stationary points satisfy tangential
stationarity but only x∗ exhibits normal growth and that in
strict form.
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Idea of reflection algorithm

0 Initialize σ ∈ {−1, 1}s and corresponding Σ = diag(σ)
1 Compute local minimizer x∗ of branch problem

min f (x ,Σz) s.t. z = F (x ,Σz) and Σz ≥ 0

2 Terminate if same x∗ was obtained in previous iteration.
3 With σ∗ = sgn(z(x∗)) flip signs of σi for which σ∗i = 0 and goto 1.

Lemma (Finite Convergnce)
Reflection algorithm reaches local minimizer if all NLOPs solvable,
LIKQ holds everywhere and ϕ is bounded below.
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Application to second Nesterov for n=2

σ = (−1,−1,−1)

(−1,−1, 1)
σ =

(1,−1, 1)
σ = σ =

(1, 1, 1)

σ =
(1, 1,−1)

σ =
(1,−1,−1)

x1

−1 0 1

−1

0

1

x2
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Successive PL with proximal term

0 Initialize starting point x and approximate Lagrangian Hessian H
1 Evaluate L,Z , a, b at x by AD update H by secant formula or exactly
2 Compute ∆x by solving via bundle or reflection

min∆y ≡ a>∆x + b>(|z + ∆z | − |z |) + 1
2∆x>H∆x

s.t. ∆z = Z∆x + L(|z + ∆z | − |z |)

3 Set x += ∆x if ϕ(x + ∆x) < ϕ(x)
4 Unless ∆x or gain ϕ(x)− ϕ(x + ∆x) too small goto 1

Lemma (Conjecture:)
Local convergence with linear, superlinear, or quadratic rate depending on
whether H is constant, secant updated, or evaluated, respectively.

A. Griewank Nonsmooth Optimality Warsaw 28 / 43



Application to Rosenbrock á la Nesterov

f (x1, x2) = 1
4(x1 − 1)2 +

∣∣∣x2 − 2 x2
1 + 1

∣∣∣ .
yields piecewise linearization
f (x1, x2)+∆f (x1, x2; ∆x1,∆x2) =

1
4(x1 − 1)2 + 1

2(x1 − 1)∆x1 +
∣∣∣x2 + ∆x2 − 2 x2

1 − 4x1∆x1 + 1
∣∣∣ .
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One linear and one nonlinear test

We considered the scalable L1hilb function

f : Rn 7→ R, f (x) =
n∑

i=1

∣∣∣∣∣
n∑

i=1

xj
i + j − 1

∣∣∣∣∣ .

and the nonlinear MAXQ function

f (x) = max
1≤i≤5

(
x>Aix − x>bi

)
Ai

kj = Ai
jk = ej/k cos(jk) sin(i), for j < k, j , k = 1, ..., 10

Ai
jj = j

10 |sin(i)|+
∑

k 6=j

∣∣∣Ai
jk

∣∣∣ ,
bi

j = ej/i sin(ij),
x0

i = 0, for all i = 1, ..., 10.
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n q0 f ∗ #f #∇f Iter
LiPsMin 2 0 2.2e-16 3 3 1

5 0 2.3e-16 3 3 1
10 0 6.4e-16 3 3 1
20 0 8.8e-11 3 6 1
50 0 3.8e-10 3 6 1
100 0 7.5e-15 3 3 1

HANSO 2 – 1.6e-2 10191 10191 5 + 3GS
5 – 5.7e-3 11678 11678 4 + 3GS
10 – 8.8e-3 14320 14320 2 + 3GS
20 – 1.2e-1 17953 17953 3 + 3GS
50 – 1.8e-1 26841 26841 3 + 3GS
100 – 4.4e-2 38484 38484 3 + 3GS

MPBNGC 2 – 4.1e-15 40 40 37
5 – 1.4e-1 10000 10000 103
10 – 1.5e-3 10000 10000 3347
20 – 1.2e-2 10000 10000 5010
50 – 3.3e-1 10000 10000 3338
100 – 4.0e-1 10000 10000 3338
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n q0 f ∗ #f #∇f Iter
LiPsMin 2 0.1 5.6e-9 37 63 15

5 0.1 1.4e-9 47 132 22
10 0.1 4.2e-9 68 309 33
20 0.1 2.9e-9 74 642 36
50 0.01 3.8e-9 131 2109 64
100 0.01 5.0e-10 166 4562 79

HANSO 2 – 3.2e-19 18 18 16 (*9)
5 – 3.0e-19 242 242 116 (*47)
10 – 6.2e-17 787 787 352 (*88)
20 – 1.1e-16 1362 1362 637 (*221)
50 – 2.1e-16 4409 4409 1906 (*494)
100 – 3.0e-16 8922 8922 3991 (*1023)

MPBNGC 2 – 7.6e-9 15 15 14
5 – 3.1e-9 60 60 49
10 – 3.4e-9 126 126 34
20 – 2.6e-9 244 244 222
50 – 3.8e-9 577 577 549
100 – 4.5e-9 1118 1118 1083
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Convexity Conditions(localized)

Supporting hyperplane condition

φ(x) ≥ φ(x∗) + g>(x − x∗)− o(‖x − x∗‖)
⇐⇒ φ(x)− g>(x − x∗) first order minimal
⇐⇒ b> ≥ |λ|> − λ>L = |λ|>(I − ΣL)

represents normal growth for some λ, which can be found by LOP.

Full local convexity condition

b>(I − DL)−1 ≥ 0 if |D| ≤ 1 ,

where D ranges over all diagonal matrices, requiring exponential test.
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Intermediate Summary and Conclusion

Piecewise smooth functions typically arise in abs-normal form.

Then Linear Independence Kink Qualification (LIKQ) is generic
and makes local combinatorial structure manageable.

Tight first and second order minimality conditions are obtained in
terms of vectors and matrices computable by an extension of AD.

Violations of the necessary conditions yield descent directions or
parabolas constructively.

Various algorithmic approaches promise linear, superlinear or
quadratic convergence under LIKQ.

Under additional nonredundancy condition V = (Z>) for VU
decomposition.
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Basic idea of tangent linearization:

x̊

F1

F2

F = max(F1, F2)

F̊1 + F ′
1 (̊x)∆x

F̊2
+
F
′
2
(̊x

)∆
x

F̊
+

∆F (̊x
; ∆

x)

LiPsMinLiPsMin
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Incrementation rules

Smoothies
∆v = ∆u + ∆w or ∆v = u ∆w + w ∆u,
∆v = ϕ′(u) ∆u if v = ϕ(u).

Kinks

v + ∆v = abs(u + ∆u) ⇔ ∆v = abs(u + ∆u)− abs(u)

Jumps
if (firstsign(u + ∆u,∇u) < 0) goto (statement #m)

where ∇u is lexicographic derivative of u and firstsign(a) is sign of first
nonzero component of a vector a ∈ R1+n.
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Piecewise Differentiation Rules

Resulting Mapping
∆x 7→ ∆y for fixed x denoted by ∆y = ∆F (x ; ∆x)

Linearity and Product Rule
F ,G : D ⊂ Rn 7→ Rm, α, β ∈ R

=⇒

∆[αF + βG ](x ; ∆x) = α∆F (x ,∆x) + β∆G(x ,∆x)
∆[F>G ](x ; ∆x) = G(x)>∆F (x ,∆x) + F (x)>∆G(x ,∆x)

Chain Rule
F : D ⊂ Rn 7→ Rm and G : E ⊂ Rm 7→ Rp with F (D) ⊂ E

=⇒

∆[G ◦ F ](x ; ∆x) = ∆G(F (x); ∆F (x ,∆x))
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Second order error and Lipschitz continuity

Proposition (Level 1 case)
If F is Level 1 on a closed convex domain K ⊂ Rn then there exists a
constant γ such that for all triplets x̂ , x̌ , x ∈ K

‖[F (x̂) + ∆F (x̂ ; x − x̂)] − [F (x̌) + ∆F (x̌ ; x − x̌)]‖
≤ 1

2γ‖x̂ − x̌‖[‖x − x̂‖+ ‖x − x̌‖‖]

=⇒ ‖[F (x) − [F (x̊) + ∆F (x̊ ; x − x̊)]‖ ≤ 1
2γ‖x − x̊‖2

=⇒ (‖∆F (x̂ ; ∆x)−∆F (x̌ ; ∆x)‖)/(1 + ‖∆x‖) ≤ γ‖x̂ − x̌‖

Finally there is a continuous radius ρ(x) such that

∆F (x ; ∆x) = F ′(x ; ∆x) if ‖∆x‖ < ρ(x)

Locally we reduce to the homogeneous piecewise linear F ′(x ; ∆x).
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Piecewise Linearization of Discontinuous f 

where

(at the origin)
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Differentiation Concepts on Euclidean Spaces

Function Space: Diff.Op.: Model Space: Discrepancy:

Level 0
∂|x̊
7−→
Lip

L = linear uniform

⊂ ⊂

Level 1
∆|x̊
7−→
Lip

PL = Piecewise L uniform

⊂ 7−→ ∂B∣∣
x̊

Level 2
∂B
∣∣
x̊

7−→
???

PLh = homog. PL nonuniform

⊂ ⊂

Level 3
∆|x̊
7−→
???

DPL = discont. PL nonuniform

A. Griewank Nonsmooth Optimality Warsaw 40 / 43



Numerical Methods for Nonsmooth Problems,
Applications of Algorithmic Piecewise Differentiation

A.Griewank, A. Walther, T.Bosse, T.Munson
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Benefits of piecewise linearization

Continuous piecewise smooth (PS) functions can be locally
approximated with second order error by piecewise linearization (PL).

PL model varies Lipschitz continuously with development point !!!

PL model can be generated effectively by minor modification of
algorithmic differentiation tools allowing for abs,min and max.

Generalized Jacobians of PL models can be computed and represent
(conically active) generalized Jacobians of underlying PS function.

Prospects for use of PL models for equation solving, (un)constrained
optimization and integration of Lipschitzian ODEs under way.

Combintorial structure can be dealt with at the piecewise linear level.

Discontinuous PS functions lead to algebraic and differential
inclusions and thus automatic event handling in ODE case.
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