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Bad News by Hirriart-U. & Lemarechal YA°h3% K BN

m Steepest descent with exact line search may get stuck on convex
piecewise linear (PL) f, due to Zenon effect = Zigzagging

Nondifferentiable points of f
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PL test function by H.U. & L. YACHAY
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Good News by H.U. & L.and Griewank ARSI K EEEES
True steepest descent trajectory x(t) defined by:

_dx(t) _
dt,

—d(x) = short(9f(x)) = argmin{||g|| : g € If(x)}

is in convex case unique solution of differential inclusion X € —9f(x),
which has stationary cluster points or limit x, in minimal level set.
Can be realized for PL f using abs-normal form and Zenon effect excluded.
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YACHAY s —

Results by Bundle Method (Karmitsa) TECH }| EB o

o Proximal Bundle Method
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Imperative program model

YACHAY 1
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Levels of Nonsmoothness
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m Straightline code with analytic elementals
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Levels of Nonsmoothness
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Add abs, min and max to Level 0
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YACHAY P4 SR

NEORMRTONTECHNOLOGY

Imperative program model TECH

Levels of Nonsmoothness

m Straightline code with analytic elementals
Add abs, min and max to Level 0

Add Euclidean norm to Level 1

Allow for sign and program branches

Assumed bounds on bounded domains

m Intermediate values and derivatives.

m Loop length and recursion depth.
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YACHAY

Nesterov's test functions HAYH EEED

Nesterov suggested ¢, : R" — R given by
n—1

m o(x) = L(a —1)° + Z Xit1—2x2 +1)* Level 0
i=1
= smooth and unlmodlal

mp1(x) = %(xl—l —1—2

=> nonsmooth, simply SW|tched and unimodal

Xiy1 — 2x —i—l‘ Level 1

n—1
B oo(x) = 3x — 1] + Z [xiv1 — 2|x| + 1] Level 1
i=1
=- nonsmooth, multiply switched and multimodal
all have unique global minimizer x, = (1,1,---,1)
and bad start (—1,1,...,(=1)").
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Nonsmooth minimality conditions YACHSN

Popular standard: Clark stationarity

0€0%%(x) = conv{limgy : g« = Vo(xx) and xx — x}
A little stronger: Mordukhovich stationarity
0 € MMp(x) C 8p(x)
Glaring Example of Insufficiency
o(x) = min(x,0) = J(x—Ix) : R-R 9
=

0 € Mp(0) ={-1,0} c 9¢p(0) = [-1,0]

but ¢ is concave and unbounded below.
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Has this function a minimum?

CHOOL OF
IATHEMATICS SCIENCES AND
IFORMATION TECHNOLOGY

Gradient cube example with maximal switching depth

n—1
f(x)=lzal +€ ) lzil, 2
i=1

= X1, and Zi = Xj — |Z,'_1|, i = 2,

., n.

A. Griewank

Note, no convexity whatsoever !

Nonsmooth Optimality
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YACHAY ﬂ

Absnormal Representation TECH

Level 1 Assumption:
Nonsmoothness cast in terms of abs() only!

Consequence
© can be written in abs-normal form using switching variables

as arguments of abs (.), i.e. p(x) = f(x,|z(x)|) where
z=F(x,|z]) with FecC?(R™ R")
y=f(x,|z|) with feC? (R R)
F and f or rather its relevant derivatives are obtainable by

Algorithmic Piecewise Differentiation

A. Griewank Nonsmooth Optimality
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Local Piecewise Linearization

Ay = o(x+ Ax) — o(x)
~ a'Ax+b'(|z+ Az| - |z|) + LAxTHAX + O(|| Ax|]?)
Az = ZAx+ L(|]z+ Az| — |z|)
with
OF
m = ﬂ € R®*® strictly lower triangular of nilpotency v <'s.

dlz|

mZ= %F(x, |z|) € R®*"

ma= (,%1"(x7 |z]) e R", b 0 f(x,|z|]) € R®

]
m H=H(x,\) € R™" = Hessian of suitable Lagrangian
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On first Nesterov Example

p1(x) — L0q — 1)2 Z)X,+1—2X +1] = Z|z,|

with
zi=Fi(x,|z]) = xip1 —2x*4+1 for i=1,...,n—1

so that L = 0 € R(r—1)x(n-1)

[—4 x; 1 [ 0 0
0 —4 xy 1 0 0
zpy=| 0 0 The e 0 D e pon
0 0 [ 1 0
-0 O 0 ............ _4XS 1-

a= (300 ~1),0.....0) €R" and b= (1,....1) ¢ R}
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Signature Vector and Domains

The signature vector
o(x) =sgn(z(x)) € {-1,0,1}°
and the corresponding diagonal matrix
Y =diag(c) € {-1,0,1}°*°
define active switch set
a=a(x)={1<i<s|oi(x) =0} |a(x)] =s—[o(x)].
Furthermore, for fixed o(X)
z=F(x,Xz)
has unique solution z7 with Vz7 = £27 = (/ - L¥)"1Z.
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YACHAY

Signatures on second Nesterov
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Linear Independence Kink Qualification YAHSY K B

Definition
We say that the linear independence kink qualification is satisfied at a
point x € R" if for 0 = o(x) the active Jacobian

J(x) = VZI(x) = (efvzo(x))iea c Rlolxn

has full row rank ||, which requires in particular that |o| > s — n.

Lemma (Transversality of kink surfaces)

LIKQ implies that the sets {zj(x) = 0} form locally piecewise smooth
hypersurfaces that are transversal whereever they intersect.

Lemma (LIKQ for Nesterov)

The functions w1 and o with their natural abs-normal forms satisfy LIKQ
globally, i.e., throughout R".
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YACHAY

Trunk and branches for n =3,5s =2 TECH

o= (—1,0)—>
branch branch
problem problem
o=(-1,1) o= (-1,-1)

o= (0,1 trunk o = (0, 0)

- 0 =(0,-1)

branch branch
problem problem
o=(1,1) + o=(1,-1)
o =(1,0)
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YACHAY

Necessary: Trunk optimality TECH

Assumptions

Full activity, i.e., s = |a| < n and
LIKQ, i.e. J(x) = Z has full rank with ZTV =0 for V € R"*("=9)

Consequence 1

minp(x) = f(x,0) s.t. z=F(x,0)=0
satisfies LICQ and minimality requires
Tangential Stationarity

a’ +A7Z =0 eR"” with \eR®
Positive Curvature

VTHV = 0 with H(x, ) = £(x,0)at (AT F(x,0)) € R™"
XX

A. Griewank Nonsmooth Optimality Warsaw 20 / 43



YACHAY

Sufficient: Branch optimality TECH

x local minimizer of ¢(x)
—
x local minimizer of the smooth problems
f(x,Xz)st. z=F(x,xz), ¥z>0
for any ¥ = diag(o) with 0 € {—1,1}*
Normal Growth
bT + AT (L-X)=p>0 <= b >|\T|-ATL =

bT >XTE —ATL and bT > AT(=X)—=A"L for some ¥
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Lemma (Sufficient conditions in linear case)

If F and f are linear then a point x where LIKQ holds is a local minimizer
<~
al +ATZ =0 and b > [NT—ATL.

i.e. the tangential stationarity and normal growth conditions are satisfied.

Corollary (Second order Sufficiency)

For general F,f the point x must be strict local minimizer if the normal
growth condition holds strictly, i.e. b > |\ — LT\ and VTHV = 0.

Lemma (Relation to stationarity concepts)

Tangential Stationarity and Normal Growth —>
Mordukhovich = Clarke = Tangential Stationarity.

A. Griewank Nonsmooth Optimality Warsaw 22/



Localization at given point x A K EE

ThE s o
Elimination of inactive kinks

Inactive switching variables 2 = (0iz;);zq keep their sign in neighborhood
and can be expressed as functions of x and critical switches Z = (z;)icq i.€.

2 = 3(x, |2|) € R

2 = F(x, 2] 2(x, |2])) € R
= 121, 2(x, |2]

is fully active at reference point and LIKQ is maintained.
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YACHAY Py prifrmmmm
TECH INFORMATION TECHNOLOGY

Optimality conditions in general case

Tangential stationarity:

[fx,fé] _ _[S\T S\T][ ,,;x ,:_AFﬁ_ I] c Rn+|cr|

24 / 43
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Optimality conditions in general case YACHAH EE

Tangential stationarity:

[fe ] = X7 XT][ NG /] & Rl

Normal growth:

<

>

NI

o> [N - [XT&TIH € R

u}
)
I
it
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Optimality conditions in general case  YACHA: K EIEE

TICS SCIENCES AND.
INFORMATION TECHNOLOGY

Tangential stationarity:

[fx,f%] _ _[S\T S\T][ ,,’E:X ,:_AFﬁ_ I] c Rn+|cr|

Normal growth:

v

o> [N = [ATAT] H € R

NI

Positive Curvature:
0 = VTHV e R(n—lal)x(n—lal)

u}
)
I

I
it

A. Griewank Nonsmooth Optimality

Warsaw 24 /43



YACHAY E b | S s o
T EC H INFORMATION TECHNOLOGY

Optimality conditions in general case

Tangential stationarity:

[ ] = —[XT &T][ NG /] e RO

v

Normal growth:
o> [N = [ATAT] H € R

NI

Positive Curvature:
0 = VTHV e R(n—lal)x(n—lal)

m Becomes sufficient if normal growth strict and VTHV is nonsingular.

Warsaw 24 / 43
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YACHAY Py prifrmmmm
TECH INFORMATION TECHNOLOGY

Optimality conditions in general case

Tangential stationarity:

[fx,fﬁ] _ _[}’\T &T][ ,,E:x ,:_AFQ_ I] c Rn+|cr\

v

Normal growth:
o> [N = [ATAT] H € R

NI

Positive Curvature:
0 = VTHV e R(n—lal)x(n—lal)

m Becomes sufficient if normal growth strict and VTHV is nonsingular.

m Violation of any necessary condition yields parabolas of descent.

Warsaw 24 / 43
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YACHAYE S |

MATHEMATICS SCIENCES AND
INFORMATION TECHNOLOGY

Verification on Nesterov examples TECH

o : Conditions reduce to Vg = 0 and H = V2pg = 0 which
hold only at x, with det(H) > 0.

1 : Tangential stationarity is only satisfied at x,, which also
exhibits strict normal growth and SSC.

@5 All 2'~1 Clarke stationary points satisfy tangential
stationarity but only x, exhibits normal growth and that in
strict form.
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|dea of reflection algorithm

[@ Initialize 0 € {—1,1}® and corresponding ¥ = diag(c)

Compute local minimizer x* of branch problem
minf(x,¥Xz) s.t. z=F(x,Xz) and Xz>0

Terminate if same x* was obtained in previous iteration.
With o* = sgn(z(x*)) flip signs of ¢; for which ¢f = 0 and goto 1.

Lemma (Finite Convergnce)
Reflection algorithm reaches local minimizer if all NLOPs solvable,
LIKQ holds everywhere and ¢ is bounded below.
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Application to second Nesterov for n=2 YACHEY
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YACHAY P4 SR

AND
NEORMATON TECHNOLOGY

Successive PL with proximal term TECH

[ Initialize starting point x and approximate Lagrangian Hessian H
Evaluate L, Z, a, b at x by AD update H by secant formula or exactly

Compute Ax by solving via bundle or reflection
mnAy = a Ax+b'(|z+ Az —|z]) + 1Ax HAX
sit. Az = ZAx+ L(|z+ Az| —|z])

Set x += Ax if p(x + Ax) < o(x)
Unless Ax or gain ¢(x) — ¢(x + Ax) too small goto 1

Lemma (Conjecture:)

Local convergence with linear, superlinear, or quadratic rate depending on
whether H is constant, secant updated, or evaluated, respectively.

A. Griewank Nonsmooth Optimality Warsaw 28 / 43



Application to Rosenbrock & la Nesterov YACHRY

f(x1,x) = 4l(x1 — 1)2 + ’XQ — 2X12 + 1’ .
yields piecewise linearization
f(x1,x0)+Af(x1, x0; Axy, Axp) =
%(xl - 1)2 + %(xl —1)Ax; + ‘xz + Axo — 2x12 —4x1Axg + 1] .

K — I A — 10
e ©contours —starting point 1
of | T—startingpoint 1 —starting point 2
- - - —starting point 2 0 . .
/—staning point 3 g 10 ——starting point 3
i E
< 5107°
o g
=]
“— 1074
-1\—
e ——— 107
=) -1 0 1 2 3 0 100 200 300 400 500
Xp iterations
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One linear and one nonlinear test

We considered the scalable L1hilb function

fFrR"— R, f(x)=)
i=1

n
X
E:i+j—1*

i=1
and the nonlinear MAXQ function

00 = max, (x A0 = xTo)

f(j = .J"-k:ej/kcos(jk)sin(i), for j<k, jk=1,..10
Al = o lsin(i)| + S Ak
bi = éel/7sin(ij),
x0= 0, forall i=1,..,10.

A. Griewank Nonsmooth Optimality Warsaw 30 / 43



| n [q°] Ff | #f | #VF | lter
LiPsMin 2 0 | 2.2e-16 3 3 1
5 | 0 |23e16| 3 3 1
10 | 0 | 6.4e-16| 3 3 1
20 | 0 | 8.8e-11 3 6 1
50 | 0 | 3.8e-10| 3 6 1
100 | 0 | 7.5e-15| 3 3 1
HANSO 2 | = | 1.6e-2 [ 10191 | 10191 | 5 + 3GS
5 | — | 5.7e-3 | 11678 | 11678 | 4 + 3GS
10 | — | 8.8e-3 | 14320 | 14320 | 2 + 3GS
20 | — | 1.2e-1 | 17953 | 17953 | 3 + 3GS
50 | — | 1.8e-1 | 26841 | 26841 | 3 + 3GS
100 | — | 4.4e-2 | 38484 | 38484 | 3 + 3GS
MPBNGC || 2 | - [4.1e15| 40 40 37
5 | — | 1.4e-1 | 10000 | 10000 103
10 | — | 1.5e-3 | 10000 | 10000 | 3347
20 | — | 1.2¢-2 | 10000 | 10000 | 5010
50 | — | 3.3e-1 | 10000 | 10000 | 3338
100 | — | 4.0e-1 | 10000 | 10000 | 3338
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H n ‘ q° ‘ r* ‘ #IF ‘ #VFf ‘ Iter
LiPsMin 2 0.1 | 5.6e-9 37 63 15
5 0.1 | 1.4e9 47 132 22
10 | 0.1 | 4.2e9 63 309 33
20 | 0.1 | 2.9e-9 74 642 36
50 | 0.01 | 3.8¢-9 | 131 | 2109 64
100 | 0.01 | 5.0e-10 | 166 | 4562 79
HANSO 2 - | 3219 | 18 18 16 (*9)
5 — | 3.0e-19 | 242 | 242 116 (*47)
10 - | 6.2e-17 | 787 | 787 352 (*88)
20 - 1.1e-16 | 1362 | 1362 | 637 (*221)
50 — | 2.1e-16 | 4409 | 4409 | 1906 (*494)
100 | — | 3.0e-16 | 8922 | 8922 | 3991 (*1023)
MPBNGC 2 - 7.6e-9 15 15 14
5 - 3.1e-9 60 60 49
10 - 3.4e-9 | 126 126 34
20 - 2.6e-9 | 244 | 244 222
50 - 3.8e-9 | 577 | 577 549
100 | - 45e-9 | 1118 | 1118 1083
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Convexity Conditions(localized)

Supporting hyperplane condition

$(x) = d(x.) + g (x = x) — ollx —x.|))
—  ¢(x) — g (x — x) first order minimal
— b >N =ATL=]\T(I-ZL)

represents normal growth for some A, which can be found by LOP.

Full local convexity condition
b'(I-DL)™* >0 if |[D|<1,

where D ranges over all diagonal matrices, requiring exponential test.
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Intermediate Summary and Conclusion

m Piecewise smooth functions typically arise in abs-normal form.

m Then Linear Independence Kink Qualification (LIKQ) is generic
and makes local combinatorial structure manageable.

m Tight first and second order minimality conditions are obtained in
terms of vectors and matrices computable by an extension of AD.

m Violations of the necessary conditions yield descent directions or
parabolas constructively.

m Various algorithmic approaches promise linear, superlinear or
quadratic convergence under LIKQ.

m Under additional nonredundancy condition V = (Z") for VU
decomposition.
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Basic idea of tangent linearization:

YACHAY

TECH E E

= max(

MATHEMATICS SCIENCES AN
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Incrementation rules

Smoothies

Av

YACHAY
Av

i o2 |
Au+ Aw or
= ¢(u)Au if

v = p(u).

Av =ulAw+ wAu,

A. Griewank
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Incrementation rules

YACHAY 1
CTECHE =i
Smoothies

MATHEMATICS SCIENCES AND
INFORMATION TECHNOLOGY

Av =

Au+Aw or Av=ulAw—+ wAu,
Av = Q(u)Au if
Kinks

v = p(u).

v+ Av = abs(u + Au)

< Av =abs(u+ Au) — abs(u)

A. Griewank
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YACHAY

Incrementation rules NHEETS

Smoothies
Av = Au+Aw or Av=ulw+ wAu,
Av = Q(u)Au if v=p(u).

Kinks

v+ Av=abs(u+ Au) < Av=abs(u+ Au)— abs(u)

Jumps
if (firstsign(u + Au,Vu) < 0) goto (statement #m)

where Vu is lexicographic derivative of u and firstsign(a) is sign of first
nonzero component of a vector a € R*".
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YACHAY

Piecewise Differentiation Rules TECH

Resulting Mapping
Ax — Ay for fixed x denoted by Ay = AF(x; Ax)

Linearity and Product Rule
F,G:DCR"—R"™ a,€R

—
AlaF + BG](x; Ax) = aAF(x,Ax)+ BAG(x, Ax)
A[FTGl(x;Ax) = G(x)"AF(x,Ax) + F(x)"AG(x, Ax)
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Piecewise Differentiation Rules RaEH AT

TECH

Resulting Mapping
Ax — Ay for fixed x denoted by Ay = AF(x; Ax)
Linearity and Product Rule
F,G:DCR"—R"™ a,€R

—
AlaF + BG](x; Ax) = aAF(x,Ax)+ BAG(x, Ax)
A[FTGl(x;Ax) = G(x)"AF(x,Ax) + F(x)"AG(x, Ax)
Chain Rule
F:DCR"—R"™ and G:ECR"—RP with F(D)CE
—

A[G o F](x; Ax) = AG(F(x); AF(x,Ax))

A. Griewank Nonsmooth Optimality Warsaw
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YACHAY

Second order error and Lipschitz continu ™ Tech

Proposition (Level 1 case)

If F is Level 1 on a closed convex domain IC C R" then there exists a
constant ~y such that for all triplets X, x,x € K

IIF(X) + AF(% x = X)] = [F(X) + AF (X% x = X)]|
< 3% = Xlllx = %I+ l1x = xI[1]
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Second order error and Lipschitz continu ™ Tech

Proposition (Level 1 case)

If F is Level 1 on a closed convex domain IC C R" then there exists a
constant ~y such that for all triplets X, x,x € K

IIF(X) + AF(% x = X)] = [F(X) + AF (X% x = X)]|
< 3% = Xlllx = %I+ l1x = xI[1]

= IF() = [FG) + AF(xix = 2] < 3vllx — %2
= (IAF(% Ax) = AF( AX)I)/(1+ |Ax]]) < A% = X]|
Finally there is a continuous radius p(x) such that

AF(x; Ax) = F'(x;Ax) if ||Ax]| < p(x)

Locally we reduce to the homogeneous piecewise linear F'(x; Ax).
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Piecewise Linearization of Discontinuous f

[ =1 ysa2y = L0y = Af (at the origin)

(x(), y(t)) = t(cos ¢, sinp)

4 -

Fla(t).u() — Afa(t).y() = {0‘1 HE> 6 ere 1, = tan(e)

ift <t cos(e)
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Differentiation Concepts on Euclidean Sy ¥A%He: K Bl

Function Space: Diff.Op.: Model Space: Discrepancy:
Ay
Level O — L = linear uniform
Lip
N N
Al
Level 1 — PL = Piecewise L uniform
Lip
N 1 9%
9", )
Level 2 — PLp = homog. PL  nonuniform
77
N N
Al
Level 3 — DPL = discont. PL  nonuniform
77
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Numerical Methods for Nonsmooth Problems,
Applications of Algorithmic Piecewise Differentiation

A.Griewank, A. Walther, T.Bosse, T.Munson
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Benefits of piecewise linearization

YACHAY

rron kd B
approximated with second order error by piecewise linearization (PL).

MATHEMATICS SCIENCES AND
INFORMATION TECHNOLOGY

m Continuous piecewise smooth (PS) functions can be locally
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m Continuous piecewise smooth (PS) functions can be locally
approximated with second order error by piecewise linearization (PL).

m PL model varies Lipschitz continuously with development point !!!
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MATHEMATICS SCIENCES AND
INFORMATION TECHNOLOGY

YACHAY E E

Benefits of piecewise linearization TECH

m Continuous piecewise smooth (PS) functions can be locally
approximated with second order error by piecewise linearization (PL).

m PL model varies Lipschitz continuously with development point !!!

m PL model can be generated effectively by minor modification of
algorithmic differentiation tools allowing for abs, min and max.

m Generalized Jacobians of PL models can be computed and represent
(conically active) generalized Jacobians of underlying PS function.

m Prospects for use of PL models for equation solving, (un)constrained
optimization and integration of Lipschitzian ODEs under way.

m Combintorial structure can be dealt with at the piecewise linear level.

m Discontinuous PS functions lead to algebraic and differential
inclusions and thus automatic event handling in ODE case.
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